Synaptobrevin cleavage by the tetanus toxin light chain is linked to the inhibition of exocytosis in chromaffin cells.
نویسندگان
چکیده
Exocytosis of secretory granules by adrenal chromaffin cells is blocked by the tetanus toxin light chain in a zinc specific manner. Here we show that cellular synaptobrevin is almost completely degraded by the tetanus toxin light chain within 15 min. We used highly purified adrenal secretory granules to show that synaptobrevin, which can be cleaved by the tetanus toxin light chain, is localized in the vesicular membrane. Proteolysis of synaptobrevin in cells and in secretory granules is reversibly inhibited by the zinc chelating agent dipicolinic acid. Moreover, cleavage of synaptobrevin present in secretory granules by the tetanus toxin light chain is blocked by the zinc peptidase inhibitor captopril and by synaptobrevin derived peptides. Our data indicate that the tetanus toxin light chain acts as a zinc dependent protease that cleaves synaptobrevin of secretory granules, an essential component of the exocytosis machinery in adrenal chromaffin cells.
منابع مشابه
Functional characterization of the catalytic site of the tetanus toxin light chain using permeabilized adrenal chromaffin cells.
The molecular events underlying the inhibition of exocytosis by tetanus toxin were investigated in permeabilized adrenal chromaffin cells. We found that replacement of amino acid residues within the putative zinc binding domain of the tetanus toxin light chain such as of histidine (position 233) by cysteine or valine, or of glutamate (position 234) by glutamine completely abolished the effect o...
متن کاملTetanus toxin-mediated cleavage of cellubrevin impairs exocytosis of transferrin receptor-containing vesicles in CHO cells
Cellubrevin is a member of the synaptobrevin/VAMP family of SNAREs, which has a broad tissue distribution. In fibroblastic cells it is concentrated in the vesicles which recycle transferrin receptors but its role in membrane trafficking and fusion remains to be demonstrated. Cellubrevin, like the synaptic vesicle proteins synaptobrevins I and II, can be cleaved by tetanus toxin, a metallo-endop...
متن کاملReductive chain separation of botulinum A toxin--a prerequisite to its inhibitory action on exocytosis in chromaffin cells.
Cleavage of the disulfide bond linking the heavy and the light chains of tetanus toxin is necessary for its inhibitory action on exocytotic release of catecholamines from permeabilized chromaffin cells [(1989) FEBS Lett. 242, 245-248; (1989) J. Neurochem., in press]. The related botulinum A toxin also consists of a heavy and a light chain linked by a disulfide bond. The actions of both neurotox...
متن کاملExploring the functional domain and the target of the tetanus toxin light chain in neurohypophysial terminals.
The tetanus toxin light chain blocks calcium induced vasopressin release from neurohypophysial nerve terminals. Here we show that histidine residue 233 within the putative zinc binding motif of the tetanus toxin light chain is essential for the inhibition of exocytosis, in the rat. The zinc chelating agent dipicolinic acid as well as captopril, an inhibitor of zinc-dependent peptidases, counter...
متن کاملIsolated light chain of tetanus toxin inhibits exocytosis: studies in digitonin-permeabilized cells.
Previous work indicates that the heavy chain of tetanus toxin is responsible for the binding of the toxin to the neuronal membrane and its subsequent internalization. In the present study, the light chain of tetanus toxin mimicked the holotoxin in inhibiting Ca2+-dependent secretion of [3H]norepinephrine from digitonin-permeabilized adrenal chromaffin cells. Preincubation of tetanus toxin with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FEBS letters
دوره 355 2 شماره
صفحات -
تاریخ انتشار 1994